
2022/02/01 02:46 1/8 Sympa Performance Issues

Sympa mailing list server - https://www.sympa.org/

Sympa Performance Issues

The resource of a software come from these three components:

Memory usage1.
CPU usage2.
Disk usage3.

However there is coherence between this resources I try to handle these as separate parts of the
project. But if a modification has a big impact in one component but this decrease the overall
performance I have to doubt it.

Memory usage

General

Perl memory management has a weird behaviour: it doesn't free memory even the process
exited from the scope (subroutine etc.) . If big objects are created than they have to be undefed
at the and of scope.

<box green|Remarks by David> It's not supposed to be that way. The documentation on perl object is
clear on the fact that perl is supposed to handle the object destruction and, I suppose, subsequent
memory managemnent, as it is the point of object destruction:

“When the last reference to an object goes away, the object is automatically destroyed.. (This may
even be after you exit, if you've stored references in global variables.)”

</box>

<box blue|Remarks by Andras> We have discussed about it. The reality is so far away that.
“[..]Because a lot of the (existing) code does not use a explicit undef on a scope exit (of course, does
this imply a variable declared with 'my').” source </box>

I take same profiling with tool named Gladiator. It go through the writes out the number of SVs,
hashes. I have put this probe in the beginning of the sympa.pl's infinit loop. After processing
messages the number of SVs slightly increased. The reasons:

Global variables

<box green|Remarks by David> We want to remove global varialbes form the main daemons. That's
a big work as we used them a lot, especially in wwsympa.fcgi, which has the worst memory usage.
</box>

<box orange|Remarks by the team> Olivier did another perl web application that uses a “Request”
object, whose job is especially to store incoming and outgoing data and to generate the request
answer. You could use such an object to get rid of globals in wwsympa.fcgi. Here is an example of this
code. </box>

http://perldoc.perl.org/perlobj.html#Destructors
http://www.perlmonks.org/?node_id=732263
https://www.sympa.org/_media/contributors/incubator/federation.cgi.txt
https://www.sympa.org/_media/contributors/incubator/federation.cgi.txt

Last update: 2017/06/23
04:31 contributors:incubator:sympa_performances https://www.sympa.org/contributors/incubator/sympa_performances

https://www.sympa.org/ Printed on 2022/02/01 02:46

Static classes

<box green|Remarks by David> We are hunting them. One is down already: The DataSource and its
sibblings, SQLsource and LDAPsource. Would you say that it is better to always use implemented
object instead of static classes? If I'm not mistaken, the class structure is loaded in memory for
further implementations, so using objects should increase memory consumption, no? </box>

<box blue|Remarks by Andras> No, I think static classes are better than always declare objects. But
we have count on it when hunting for memory leaks. </box>

Memory leaks

With the first two I can't do anything. Maybe regularly should be freed in the loop if didn't consists
valid information. The third one is a serious problem I have to go deeper and check around the
subrutines…

<box green|Remarks by David> That's great because we really nedd your help on the third
one!</box>

bulk.pl

The bulk.pl is one of the daemons which is leaking in our production environment. I haven't
found the source of these leaks. I studies the spamassassin daemon which has a similar
structure (multiprocess, all process the same task). The difference is that the spamd master
daemon doesn't handle any messages, it only checks the conditions and forks if new daemon is
needed. The master bulk daemon should do the same.

<box green|Remarks by David> Interesting, but I don't see for now how the messages sending can
influence the ability of a daemon to fork into children. Is it because it holds data in memory
(messages for example) and is connected to the dataabse? The fork is done at the start of the loop,
just after having checked the number of messages waiting in the database spool, but before loading a
message to process. Maybe we don't cleanly delete the message processed during the previous loop?
</box>

Bulk::messageasstring seems to be dead code.

<box green|Remarks by David> Indeed. Don't mind it, we have rewritten most of the message
sending process (the changes are included in you SVN.) so dead code will be removed soon. </box>

<box orange|Remarks by the team> Most of the team (contrary to what I told you via Skype) agrees
on the fact that moving the packet preparation to bulk.pl would not be a good idea. The process that
prepares the sending packets (currently, sympa;pl) needs to access the lists config to have the VERP
rate, subscribers options, and a lot of sending options. It does some pre-sending treatments (data
merge, S/MIME and DKIM signing) because because they can't be done otherwhere, but all the
packets preparatnios should still remain in Sympa. In addition, we are working on the Sympa
clusterization, which implies making all ressources available and sharable by several processes. In
such a configuration, we could have several sympa.pl running and preparing packets.

We think that the best rate effort / result for you would be obtained by focusing an the bulk.pl daemon
modifications, the wwsympa.fcgi process (especially the global variables) and maybe the memory
leaks in sympa.pl, as you could use the results of the experiments led by Olivier and reproduces at

2022/02/01 02:46 3/8 Sympa Performance Issues

Sympa mailing list server - https://www.sympa.org/

the bottom of this page. </box>

sympa.pl

bounced.pl

task_manager.pl

wwsympa.fgci/SOAP

Terrible memory usage and leaking…supply

<box green|Remarks by David> Yes… Please, help us! </box>

27th of April: After debugging a whole night, I found a memory leak in external Template
module. Only the version 2.20 is affected, unfortunately Ubuntu 10.04 ships this version.:(

other

CPU usage

General

Drop message priorities: prioritizing the message sounds good at the first time, but I don't see
any advantages: a non-overloaded system every message get through the sympa in few
seconds even at a large traffic server. On the other had classifying a message takes some
resources and make the code more complex.

<box green|Remarks by David> Actually, messages priority is crucial in a lot of cases. For example, if
you are distributing a newsletter to 10,000 subscribers, it can take several minutes. Sympa can
interrupt the distribution to send a message to a higher priority list. This is important when it is a list
ofr important people, such a the list of university presidents of the country, or an alert mailing list.
Sometimes, you d'ont want, or just can't wait for distribution. Withou priorities, messages would be
distributed roughly according to their arrival date, which is not related to the degree of urgency of the
information distribution. In addition, when your Sympa is stopped for half a day, messages keep on
being stored in the spools. It is a good thing that, once Sympa is restarted, The most important lists
are handled first. </box>

bulk.pl

sympa.pl

Cleanspool functions should be moved to task_manager.pl. They can hang the message

Last update: 2017/06/23
04:31 contributors:incubator:sympa_performances https://www.sympa.org/contributors/incubator/sympa_performances

https://www.sympa.org/ Printed on 2022/02/01 02:46

process.

<box green|Remarks by David> Indeed. We plan to let the task_manager.pl daemon handle this.
Cleanspool functions are a pre-task_manager era remnants and evolution should put them out.
</box>

The queue checking algorithm is O(n*n*log(n)) because every time the daemon process a
message look into the spool for new messages. It should process all founded message in the
spool.

<box green|Remarks by David> Are you sure? I remembered that we make a readdir operation in the
spool, put all the messages found in a hash and then process these messages. Maybe I don't
understand correctly.</box>

bounced.pl

task_manager.pl

wwsympa.fgci/SOAP

other

Disk usage

bulk.pl

sympa.pl

The currently used filesystem queue model has two major disadvantages:

The “queue” C program is called for every recipient and it has to be written to the disk in n copy1.
(where n is the number of recepients) and has to process every copy of the letter
sympa.pl doesn't know about the other recipients. It is hard to implement eg. a crosspost-filter2.

My suggestion: At the MTA→sympa communication implement LMTP. LMTP is an extension of ESMTP
where the receiver can reject a letter on per recipient basis. So no need to write the message to the
disk.

Disadvantages:
 * Limited queue: because of the sympa.pl is a single thread app, the queue
is limited by the OS TCP queue
 * The priority system can't be implemented: the sympa.pl become a FCFS
system.

<box green|Remarks by David> Do you mean that the send scenario evaluation should be done at

2022/02/01 02:46 5/8 Sympa Performance Issues

Sympa mailing list server - https://www.sympa.org/

the queue level? that sympa.pl should replace the C queue program? If this is the case, I see a
problem: For now, when sympa.pl is stopped, the messages still go to the spool and can be handled
after. So implementing such a feature would expose us to the risk of losing messages arriving while
sympa.pl is down. </box>

bounced.pl

task_manager.pl

wwsympa.fcgi/SOAP

other

<box orange|Remarks by the team> Olivier did a deep analysis of concerning brutal memory
concumption rises. You can find all his analysis in the section below. </box>

Memory leaks

Facts noted by Olivier Salaün.

Constat

sympa.pl processes see their memory concumption brutally rise.

Characteristics:

only sympa.pl is concerned
the memory is never freed after this rise
the memory rises correspond to large messages processing
they happen even if the message is moved to bad (for example if it is too large)

Analysis tools

Methodology:

launche sympa.pl1.
ps auwx to know the size of the process (le figure to take into account is RSS, expressed in kB)2.
send a big message to a list3.
ps auwx efter the message was processed4.

Tools:

Last update: 2017/06/23
04:31 contributors:incubator:sympa_performances https://www.sympa.org/contributors/incubator/sympa_performances

https://www.sympa.org/ Printed on 2022/02/01 02:46

/usr/local/sympa/src/tools/test-mem-leaks.pl: a small daemin which load a message at each
loop. Usefull to understand which functions make the memory grow.
/usr/local/sympa/src/patches/memwatch.patch: A patch to apply on Log.pm to add the momoery
use at each log entry. It is possible to increase the log level and even add development traces
to narrow on what part of the code is faulty.

Analysis

A test reveals the problem while sending a 26 MB message, rejected by sympa.pl:

process startup : 47MB1.
end of message processing : 1 273MB2.

The parts of the code in which memmory consumption rise (base=message de 26Mo) :

+20Mo : Message::new / MIME::Parser::read()

<box blue|Remarks by Andras> I think it's normal, we can't do anything with it. </box>

+52Mo : Message::new / MIME::Entity::as_string()

<box blue|Remarks by Andras> I replaced this one with read(FILE, $message→{'msg_as_string',-s
FILE). This is saved 26Mb. </box>

+26Mo : sympa::DoMessage / (parameter passing?)

<box blue|Remarks by Andras> I can't reproducate this. </box>

+100Mo : sympa::DoMessage / do_log using the argument $message→{'msg_as_string'}

<box blue|Remarks by Andras> I hope this is only the part of development release and not the
debugging. </box>

+26Mo : sympa::DoMessage / creating a variable with $msg→as_string

<box blue|Remarks by Andras> We have to forbid to use $msg→as_string and force to use
$msg→{'msg_as_string'} as reference! </box>

+200Mo : sympa::DoMessage / call to tools::checkcommand()

<box blue|Remarks by Andras> This uses $msg→body which put the body of the message to an
array. Every element of the array is one line of a message. This can't be efficient. </box>

+80Mo : sympa::DoMessage / call to reject_report_msg()

<box blue|Remarks by Andras> We should never pass a message to the subrutine by value, only just
by reference </box>

+80Mo : List::send_file / dup_var

<box blue|Remarks by Andras> Similar to above: shouldn't copy a message object. Do you know
Sympa why duplicate the message in this case? </box>

2022/02/01 02:46 7/8 Sympa Performance Issues

Sympa mailing list server - https://www.sympa.org/

+260Mo : mail::mail_file / TT2 parsing
+170Mo : mail::mail_file / reformat_message
+26Mo : mail::mail_file / passing a parameter to sending()

<box blue|Remarks by Andras> I hasn't checked these yet. </box>

+50Mo : mail::sending / $msg→as_string

<box blue|Remarks by Andras> Same as above. </box>

Conclusions

To sum up, the memory consumption rise when:

a data structure is duplicated (dup_var ou $msg→as_string)1.
large data structures are passed as subroutines arguments.2.

<box blue|Remarks by Andras> …and the call tree is too deep, so perl GC can't reuse the same
memory for the subrutines </box>

Possbile solutions:

For (1) : increase the exploitation of the Message object; don't duplicate data, don't parse the
same content several times.

<box blue|Remarks by Andras> Agreed. This is a hard work, I try to automatisate somehow. </box>

For (2) : This problem seems to come from Perl. Deeper digging is required to solve it.

<box blue|Remarks by Andras> No, the solution is quite easy: pass a message to the subrutine as
reference. The harder part is to find all the object which consists the body of the message. I'm
searching for an debug utility which prints out those lexical objects which are bigger than a given
size. </box>

<box blue|Remarks by Andras> The basic rules which we muss use to get rid of these duplications:

If you create a new Message based on an earlier one, you should “overwrite” it, this saves a lot
of works
You shouldn't pass a message as string to a subroutine, the recommended way to pass the
Message object as reference.
You mustn't parse the body of the message as hash or array! These actions are very memory
and CPU intensive.
The code has to be refactorized, the big strings' name has to be signed. eg. big_body_as_string.
This useful to determine which variables should be handled with care.
If you create a new Message (eg. reject message) and the old Message object not used
anymore it should be undefed.

</box>

Last update: 2017/06/23
04:31 contributors:incubator:sympa_performances https://www.sympa.org/contributors/incubator/sympa_performances

https://www.sympa.org/ Printed on 2022/02/01 02:46

From:
https://www.sympa.org/ - Sympa mailing list server

Permanent link:
https://www.sympa.org/contributors/incubator/sympa_performances

Last update: 2017/06/23 04:31

https://www.sympa.org/
https://www.sympa.org/contributors/incubator/sympa_performances

	Sympa Performance Issues
	Memory usage
	General
	bulk.pl
	sympa.pl
	bounced.pl
	task_manager.pl
	wwsympa.fgci/SOAP
	other

	CPU usage
	General
	bulk.pl
	sympa.pl
	bounced.pl
	task_manager.pl
	wwsympa.fgci/SOAP
	other

	Disk usage
	bulk.pl
	sympa.pl
	bounced.pl
	task_manager.pl
	wwsympa.fcgi/SOAP
	other

	Memory leaks
	Constat
	Analysis tools
	Analysis
	Conclusions

